Answer:tickets in Germany cost $8.93
tickets in France cost $8.85
Step-by-step explanation:
Let x represent the cost of a movie ticket in Germany.
Let y represent the cost of a movie ticket in France.
Four movie tickets in Germany plus 3 movie tickets in France cost &62.27. This means that
4x + 3y = 62.27 - - - - - - - - 1
three tickets in Germany plus 4 tickets in France cost $62.19
This means that
3x + 4y = 62.19 - - - - - - - - -2
Multiplying equation 1 by 3 and equation 2 by 4. It becomes
12x + 9y = 186.81
12x + 16y = 248.76
Subtracting,
- 7y = - 61.95
y = - 61.95/7
y = 8.85
Substituting y = 8.85 into equation 1, it becomes
4x + 3×8.85 = 62.27
4x + 26.55 = 62.27
4x = 62.27 - 26.55
4x = 35.72
x = 35.72/4 = 8.93
What’s the original question and I can help!
Answer:
One way to identify alternate exterior angles is to see that they are the vertical angles of the alternate interior angles.
Step-by-step explanation:
so if I was you I would use that strategy to try to find the pair of the Alternate exterior angles.
so the agles are probably 1 and 7 but i don’t want you to get it wrong so here’s a picture Of an example.
The answer is 26 because I added

well, for both angles A and B we're on the IV Quadrant, meaning, the sine is negative, the cosine is positive, likewise, the opposite side is negative and the adjacent side for the angle is positive.
![\bf cos(A)=\cfrac{\stackrel{adjacent}{3}}{\underset{hypotenuse}{5}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{5^2-3^2}}\implies b = \pm 4 \\\\\\ \stackrel{IV~Quadrant}{b = -4}\qquad \qquad sin(A)=\cfrac{\stackrel{opposite}{-4}}{\underset{hypotenuse}{5}} \\\\[-0.35em] ~\dotfill\\\\ cos(B)=\cfrac{\stackrel{adjacent}{12}}{\underset{hypotenuse}{13}}\qquad \qquad \stackrel{\textit{getting the opposite side}}{b=\pm\sqrt{13^2-12^2}}\implies b = \pm 5](https://tex.z-dn.net/?f=%5Cbf%20cos%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B3%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B5%5E2-3%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%204%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-4%7D%5Cqquad%20%5Cqquad%20sin%28A%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-4%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B12%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bgetting%20the%20opposite%20side%7D%7D%7Bb%3D%5Cpm%5Csqrt%7B13%5E2-12%5E2%7D%7D%5Cimplies%20b%20%3D%20%5Cpm%205)
![\bf \stackrel{IV~Quadrant}{b = -5}\qquad \qquad sin(B)=\cfrac{\stackrel{opposite}{-5}}{\underset{hypotenuse}{13}} \\\\[-0.35em] ~\dotfill\\\\ sin(A-B)=\cfrac{-4}{5}\cdot \cfrac{12}{13}-\left( \cfrac{3}{5}\cdot \cfrac{-5}{13} \right)\implies sin(A-B)=\cfrac{-48}{65} - \left( \cfrac{-15}{65} \right) \\\\\\ sin(A-B)=\cfrac{-48}{65} + \cfrac{15}{65}\implies sin(A-B)=\cfrac{-33}{65}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7BIV~Quadrant%7D%7Bb%20%3D%20-5%7D%5Cqquad%20%5Cqquad%20sin%28B%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cunderset%7Bhypotenuse%7D%7B13%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-4%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B12%7D%7B13%7D-%5Cleft%28%20%5Ccfrac%7B3%7D%7B5%7D%5Ccdot%20%5Ccfrac%7B-5%7D%7B13%7D%20%5Cright%29%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20-%20%5Cleft%28%20%5Ccfrac%7B-15%7D%7B65%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20sin%28A-B%29%3D%5Ccfrac%7B-48%7D%7B65%7D%20%2B%20%5Ccfrac%7B15%7D%7B65%7D%5Cimplies%20sin%28A-B%29%3D%5Ccfrac%7B-33%7D%7B65%7D)