Answer:
The electrons where in motion
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Nonfoliated is the answer I belive.. Hopefully
Answer:
2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.
Explanation:
- For balancing a chemical equation, we should apply the law of conversation of mass. It states that the no. of atoms in the reactants side is equal to that of the products side.
So, the balanced equation:
<em>2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.</em>
It is clear that 2.0 moles of C₃H₇BO₃ is completely burned in 8 m oles of oxygen and produce 6 moles of CO₂, 7 moles of H₂O and 1 mole of B₂O₃.