Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
Answer:
Pressure is inversely proportional to the volume of gas.
Explanation:
According to Boyle's law,
The volume of given amount of gas is inversely proportional to the pressure applied on gas at constant volume and number of moles of gas.
Mathematical expression:
P ∝ 1/ V
P = K/V
PV = K
when volume is changed from V1 to V2 and pressure from P1 to P2 then expression will be.
P1V1 = K P2V2 = K
P1V1 = P2V2
You may tell when a solution os formed when the item or particle, such as sugar or salt,
dissolves completely in the solvent, such as water.
Basically, you know when a solution is formed when the material you have placed in the solvent disappears :P
Answer: X could represent the element of oxidation state (+2) such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, ....etc)
Explanation:
- The formula of the compound XSO4 is a neutral compound that the algebraic summation of the oxidation states of different elements in it must be zero.
- The group SO4 has the oxidation state (2-), that S has (6+) oxidation state and O has (2-) oxidation state, so the oxidation of SO4 = (6+) + (-2*4) = -2.
- It is clear that X must have the oxidation state 2+.
- So, X could be represents by many different elements such as (Mg2+, Pb2+, Ba2+, Ca2+, Ba2+, Zn2+, Fe2+, ....etc)
Answer:
The proton remains the same.
Explanation:
Oxidation is simply defined as the loss of electron(s) during a chemical reaction either by an atom, molecule or ion.
Oxidation is strictly on the transfer of electron(s) and not proton.
A metal that undergoes oxidation still has its protons intact otherwise it will not be called the ion of the metal since atomic number is called the proton number.
Sodium (Na) undergoes oxidation as follow:
Na —> Na+ + e-
Na is called sodium metal.
Na+ is called sodium ion.
Na has 11 electrons and 11 protons
Na+ has 10 electrons and 11 protons
From the above illustration, we can see that the protons of Na and Na+ are the same why their electrons differ because Na+ indicates that 1 electron has been loss or transferred.