155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
Answer:
A 1.0 min
Explanation:
The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.
From the graph in the problem, we see that the initial mass of the isotope at time t=0 is

The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:

We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.
Given :
Number of operations move through a pocket calculator during a full day's operation ,
.
To Find :
How many coulombs of charge moved through it .
Solution :
We know , charge in one electron is :

So , charge on n electron is :

Therefore , -21.44 coulombs of charge is moved through it .
Hence , this is the required solution .
Answer:
The magnitude of the resultant of the magnetic field is 
Explanation:
Given that,
Current = 40 A
Magnetic field 
Distance = 22 cm
We need to calculate the magnetic field
Using formula of magnetic field

Where, r = distance
I = current
Put the value into the formula


We need to calculate the magnitude of the resultant of the magnetic field
Using formula of resultant

Put the value into the formula


Hence, The magnitude of the resultant of the magnetic field is 
Answer:
Kinetic energy cannot be negative
potential energy is a reference dependent quantity and it can be positive as well as negative both
Since potential energy is defined only for conservative force so it can not be found for friction force
Explanation:
Kinetic energy of an object is given by the formula

here we know that
m = mass of object that can not be negative
v = speed of the object and since its square is given here so it can not be negative
so Kinetic energy is always positive
potential energy is given as the energy due to the virtue of the position of object
so it is

so potential energy is a reference dependent quantity and it can be positive as well as negative both
Since potential energy is defined only for conservative force so it can not be found for friction force