C. Temperature, chemical composition and mineral structure
Explanation:
The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.
The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.
- The left part is the discontinuous end while the right side is the continuous series.
- From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
- A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
- At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.
Learn more:
Silicate minerals brainly.com/question/4772323
#learnwithBrainly
Answer:
27.82998 km/min
Explanation:
To convert m/sec into km/hr, multiply the number by 18 and then divide it by 5.
KE = 1/2 x 80 x 60^2
KE = 144000
Answer:
Explanation:
Mass of nails is 0.25kg
Mass of hammer 5.2kg
Speed of hammer is =52m/s
Then, Ben kinetic energy is given as
K.E= ½mv²
K.E= ½×5.2×52²
K.E= 7030.4J
Given that, two-fifth of kinetic energy is converted to internal energy
Internal energy (I.E) = 2/5 × K.E
Internal energy (I.E) = 2/5 × 7030.4
I.E=2812.16J.
Energy increase is total Kinetic energy - the internal energy
∆Et= K.E-I.E
∆Et= 7030.4 - 2812.16
∆Et= 4218.24J
I think the correct answers from the choices listed above are options 1, 5 and 7. Angular momentum quantum number determine the energy of an orbital, the shape of the orbital and <span>the overall size of an orbital. Hope this answers the question.</span>