Answer:
B.) 80 cans, 20 brushes
Step-by-step explanation:
Let the cans of paint be represented by variable <em>p</em> , and brushes by variable <em>b</em>
The first equation would be ; p + b = 100
p = 100 - b
The second equation would be;
8p + 12b = 880
Replace p in the equation by (100-b);
=8(100-b) + 12b =880
=800 - 8b +12b = 880
= subtract 800 from both sides to get;
4b = 880-800
4b = 80
divide both sides by 4 to solve for b;
b= 80/4
b = 20
If p + b = 100, then p+20 = 100
p = 100-20
p = 80
Therefore, they sold 80 cans of paint and 20 brushes
Answer:
sqrt(5)*sqrt(5)=5.
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given that in our industry on average a firm paid out record year end bonuses of $125,500 per employee for 2008. We would like to take a sample of employees at our firm to see whether the mean year end bonus is different from the reported mean of $125,500 for the population.
1. Sample Mean =
118000
2. Population Mean = 125500
3. Population Standard Deviation = 30000
4. Sample size = 40
5. Alpha Error = 5%
6. Confidence Coefficient = 95%
7. Calculate Test Statistic = Mean difference /s td error = -1.581
8. Rejection Region Critical Value = If Z statistic is below -1.96 or above 1.96
Answer:
x = 2
Step-by-step explanation:
because m || n, you can assume the two angles are congruent.
set them equal to each other:
5x - 4 = 4x - 2
<u>solve</u>
add 4 to both sides: 5x + (-4 + 4) = 4x + (-2 + 4) --> 5x = 4x + 2
subtract 4x from both sides: (5x - 4x) = (4x - 4x) + 2 --> x = 2
Responder:
120 maneras.
Explicacion paso a paso:
Cinco tipos diferentes de semillas.
El numero de formas de organizar, n, a diferencia de los objetos en una linea es n!
Entonces, para sembrar 5 tipos diferentes de flores, serian 5!
5! = 5 * 4 * 3 * 2 * 1 = 120 vias.
Por lo tanto, hay 120 formas de sembrar las cinco semillas.
Hablo ingles y escribo ingles. Espero que entiendas. Acabo de utilizar el traductor de Google para intentar que la respuesta sea mas clara para ti :).
Por favor, califique con 5 estrellas, gracias, y deme lo mejor (Brainliest). Gracias.