A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer:
C. The half-life of C-14 is about 40,000 years.
Explanation:
The only false statement from the options is that the half-life of C-14 is 40,000yrs.
The half-life of an isotope is the time it takes for half of a radioactive material to decay to half of its original amount. C-14 has an half-life of 5730yrs. This implies that during every 5730yrs, C-14 will reduce to half of its initial amount.
- All living organisms contain both stable C-12 and the unstable isotope of C-14
- The lower the C-14 compared to the C-12 ratio in an organism, the older it is.
Answer:
1)Or
d.Sublimation
2)
b.iodine is the solute and alcohol is solvent
3)
a.compostion of solute