Answer:
51.66 mol H2O (steam)
Explanation:
5.74 mol C3H18 x 18 mol H2O/ 2 mol C3H18 = 51.66 mol H2O (steam)
0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated using the following expression:
PV = nRT
Where;
- p = pressure (atm)
- v = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 11.2 = n × 0.0821 × 300
8.4 = 24.63n
n = 8.4 ÷ 24.63
n = 0.34 moles
Therefore, 0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
Learn more about number of moles at: brainly.com/question/1190311
Using the law of <span>dilution:
</span>initial Molarity = 3.5x10⁻⁶ M
<span>Initial volume = 4.00 mL
</span>
final Molarity = ??
final volume = 1.00 mL
Therefore:
Mi x Vi = Mf x Vf
(3.5x10⁻⁶) x 4.00 = Mf x 1.00
1.4x10⁻⁵ = Mf x 1.00
Mf = 1.4x10⁻⁵ / 1.00 =
1.4x10⁻⁵ M
Answer:
ΔH = - 44.0kJ
Explanation:
H2O(l)→H2O(g), ΔH =44.0kJ
In the reaction above, liquid water changes to gaseous water. This occurs through a process known as boiling. This process requires heat, hence the ΔH is positive.
If he reaction is reversed, we have;
H2O(g)→H2O(l)
In this reaction, gaseous water changes to liquid water. This process is known as condensation. The water vapor loses heat in this reaction. Hence ΔH would be negative but still have the same value.