Answer:
Kinetic energy is 1425.11 J.
Explanation:
Given:
Mass of the wrench is, 
Height of fall is, 
Force of resistance is, 
Now, the total energy at the top is equal to the potential energy of the wrench at the top since the kinetic energy at the top is 0.
Now, potential energy at the top is given as:

Now, the potential energy at the top is converted to kinetic energy at the bottom and some energy is wasted in overcoming the resistance force by air.
Potential Energy = Kinetic energy + Energy to overcome resistance.
⇒ Kinetic energy = Potential Energy - Energy to overcome resistance.
Energy to overcome resistance force is the work done by the wrench against the resistance force and is given as:

Therefore, Kinetic energy at the bottom is given as:

Hence, the kinetic energy of the wrench be when it hits the water is 1425.11 J.
Answer:
(I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Explanation:
Given that,
Length of copper wire = 1.70 m
Diameter = 0.700 mm
Length of carbon piece = 20.0 cm
Cross section area
(I). We need to calculate the area of copper wire
Using formula of area


We need to calculate the resistance
Using formula of resistance

Put the value into the formula


(II). We need to calculate the resistance
Using formula of resistance

Put the value into the formula


Hence, (I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
The answer is a. generator!
Answer: 71.72 days
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula: </u>
(1)
Where:
is the final amount of Iodine-131
is the initial amount of Iodine-131
is the time elapsed
is the half life of Iodine-131
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Finding
: