1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
8

A marble is thrown horizontally with a speed of 7 m/s. When the marble lands, it hastraveled a horizontal displacement of 30 m.

How much time was the marble in the air?
Physics
1 answer:
Alex Ar [27]3 years ago
6 0

Answer:

t = 4.28 s

Explanation:

The horizontal speed of a marble = 7 m/s

The horizontal displacement covered by the marble = 30 m

We need to find the time for which the marble is in air. Let the time is t. Using the formula for speed to find it as follows :

s=\dfrac{d}{t}\\\\t=\dfrac{d}{s}\\\\t=\dfrac{30\ m}{7\ m/s}\\\\=4.28\ s

So, it will in the air for 4.28 s.

You might be interested in
An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast
forsale [732]

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

7 0
3 years ago
The spreading of waves behind an aperture is more for long wavelengths and less for short wavelengths.Less for long wavelengths
Allisa [31]

Answer:

Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.

Explanation:

Solution:-

- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.

- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.

- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:

                                         d sin (θ) = m λ

Where,

     λ : Wavelength , θ : The spread angle , d : Slit opening or grating

- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.

5 0
3 years ago
A stone is thrown vertically upwards with a speed of 30.0 m/s.
matrenka [14]

a)

Y₀ = initial position of the stone at the time of launch = 0 m

Y = final position of stone = 20.0 meters

a = acceleration = - 9.8 m/s²

v₀ = initial speed of stone at the time of launch = 30.0 m/s

v = final speed = ?

Using the equation

v² = v₀² + 2 a (Y - Y₀)

inserting the values

v² = 30² + 2 (- 9.8) (20 - 0)

v = 22.5 m/s


b)

Y₀ = initial position of the stone at the time of launch = 0 m

Y = maximum height gained

a = acceleration = - 9.8 m/s²

v₀ = initial speed of stone at the time of launch = 30.0 m/s

v = final speed = 0 m/s

Using the equation

v² = v₀² + 2 a (Y - Y₀)

inserting the values

0² = 30² + 2 (- 9.8) (Y - 0)

Y = 46 m



6 0
3 years ago
Calculate the sample standard deviation and sample variance for the following frequency distribution of hourly wages for a sampl
ollegr [7]
<h2>Answer:</h2>

(a) standard deviation = σ = 4.9996

(b) variance = σ² = 24.996

<h2>Explanation:</h2><h2 />

<em>Given frequency table (find attached as Table 1);</em>

<u></u>

(a) To find the sample standard deviation and sample variance, follow these steps;

<em>i. Calculate the mid-point c for each group by using the mid-point formula;</em>

c = (lower bound + upper bound) / 2

=> c = (6.51 + 8.50) / 2 = 7.505

=> c = (8.51 + 10.50) / 2 = 9.505

=> c = (10.51 + 12.50) / 2 = 11.505

=> c = (12.51 + 14.50) / 2 = 13.505

=> c = (14.51 + 16.50) / 2 = 15.505

<em>So the new table becomes (find attached as Table 2);</em>

<em>ii. Calculate the total number of samples (n) which is the sum of all the frequencies.</em>

n = 50+18+42+20+46

n = 176

<em>iii. Calculate the mean (M)</em>

This is done by first multiplying the midpoints by the corresponding frequencies and then dividing the result by the total number of samples (n).

M = [(7.505 x 50) + (9.505 x 18) + (11.505 x 42) + (13.505 x 20) + (15.505 x 46)] / 176

M = [375.25 + 171.09 + 483.21 + 270.1 + 713.23] / 176

M = [2012.88] / 176

M = 11.44

<em>iv. Find the variance (σ²);</em>

The variance is calculated using the following formula

σ² = [Σ(f x c²) - (n x M²)] / (n - 1)                ------------(i)

Where;

f = frequency of each boundary data point

<em>=>  Let's first calculate </em>Σ(f x c²).

This is done by finding the sum of the product of the frequency (f) of each boundary point and the square of their corresponding mid-points(c)

Σ(f x c²) = [(50 x 7.505²) + (18 x 9.505²) + (42 x 11.505²) + (20 x 13.505²) + (46 x 15.505²)]

Σ(f x c²) = [(2816.25125) + (1626.21045) + (5559.33105) + (3647.7005) + (11058.63115)]

Σ(f x c²) = 24708.1244

<em>=> Now calculate (n x M²)</em>

n x M² = 176 x 11.44²

n x M² = 23033.7536

<em>=> Now substitute these values into equation (i) to calculate the variance</em>

σ² = [Σ(f x c²) - (n x M²)] / (n - 1)

σ² = [24708.1244 - 23033.7536] / (176 - 1)

σ² = [4374.3708] / (175)

σ² = 24.996

Therefore, the variance is 24.996

<em>v. Find the standard deviation (σ)</em>

The standard deviation is the square root of the variance. i.e

σ = √σ²

σ = √24.996

σ = 4.9996

Therefore, the standard deviation is 4.9996

4 0
3 years ago
Which law represents the thermodynamic statement of the conservation of energy of a system
Tresset [83]
The law of conservation of energy is a law of science that states that energy cannot be created or destroyed, but only changed from one form into another or transferred from one object to another.<span>

</span>
3 0
3 years ago
Other questions:
  • Which of the following is an elastic collision?
    14·2 answers
  • What is the mass of an object if a net force of 8.0 N causes it to accelerate at 1.1 m/s2?
    7·2 answers
  • A wave with a frequency of 190 hz and a wavelength of 28.0 cm is traveling along a cord. the maximum speed of particles on the c
    9·1 answer
  • how far the medium (crests and troughs, or compressions and rarefactions) moves from ________ the place the medium is when not m
    10·1 answer
  • What will an object weigh on the Moon's surface if it weighs 100 N on Earth's surface? (b) How many Earth radii must this same o
    5·1 answer
  • What type of weather do cirrus clouds indicate? Snow Fair weather Rain Hail
    9·2 answers
  • How do I learn the basics of physics
    13·1 answer
  • PSYCHOLOGY<br><br> All of our behaviors have been learned.<br> OA True<br> OB False
    15·1 answer
  • PROJECTILE MOTION FOR TWO Rocks-VELOCITY-TIME GRAPHS
    11·1 answer
  • Artists can create emphasis in a competition using
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!