Answer:

Step-by-step explanation:
Given - The circumference of the ellipse approximated by
where 2a and 2b are the lengths of 2 the axes of the ellipse.
To find - Which equation is the result of solving the formula of the circumference for b ?
Solution -

Squaring Both sides, we get
![[\frac{C}{2\pi }]^{2} = [\sqrt{\frac{a^{2} + b^{2} }{2} }]^{2} \\\frac{C^{2} }{(2\pi)^{2} } = {\frac{a^{2} + b^{2} }{2} }\\2\frac{C^{2} }{4(\pi)^{2} } = {{a^{2} + b^{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BC%7D%7B2%5Cpi%20%7D%5D%5E%7B2%7D%20%20%20%3D%20%20%5B%5Csqrt%7B%5Cfrac%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D%7B2%7D%20%7D%5D%5E%7B2%7D%20%5C%5C%5Cfrac%7BC%5E%7B2%7D%20%7D%7B%282%5Cpi%29%5E%7B2%7D%20%20%7D%20%20%20%3D%20%20%7B%5Cfrac%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D%7B2%7D%20%7D%5C%5C2%5Cfrac%7BC%5E%7B2%7D%20%7D%7B4%28%5Cpi%29%5E%7B2%7D%20%20%7D%20%20%20%3D%20%20%7B%7Ba%5E%7B2%7D%20%2B%20b%5E%7B2%7D%20%7D)

∴ we get

No.
The distance is |-5 -3| = 8 units. (Y-coordinates are the same, so the distance is measured entirely in the x-direction. Distance is non-negative.)
Answer:
1.778 times more or 16/9 times more
Step-by-step explanation:
Given:
- Mirror 1: D_1 = 8''
- Mirror 2: D_2 = 6"
Find:
Compare the light gathering power of an 8" primary mirror with a 6" primary mirror. The 8" mirror has how much light gathering power?
Solution:
- The light gathering power of a mirror (LGP) is proportional to the Area of the objects:
LGP ∝ A
- Whereas, Area is proportional to the squared of the diameter i.e an area of a circle:
A ∝ D^2
- Hence, LGP ∝ D^2
- Now compare the two diameters given:
LGP_1 ∝ (D_1)^2
LGP ∝ (D_2)^2
- Take a ratio of both:
LGP_1/LGP_2 ∝ (D_1)^2 / (D_2)^2
- Plug in the values:
LGP_1/LGP_2 ∝ (8)^2 / (6)^2
- Compute: LGP_1/LGP_2 ∝ 16/9 ≅ 1.778 times more
Answer:
sorry but where is the triangle ️
<h3>
♫ - - - - - - - - - - - - - - - ~<u>
Hello There</u>
!~ - - - - - - - - - - - - - - - ♫</h3>
➷ Put -2 everywhere you see x:
f(-2) = 5(-2)
f(-2) = -10
<h3><u>
✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡