Answer:
If a certain cone with a height of 9 inches has volume V = 3πx2 + 42πx + 147π, what is the cone’s radius r in terms of x?
Step-by-step explanation:
V = 3πx2 + 42πx + 147π
V=3π(x2 + 14x +49)
9.42(x2 + 14x +49)
9.42(x2 + 14x +14) -14 + 49= 0
9.42(x + 7)^2 + 35= 0
9.42(9.42(x + 7)^2 = - 35)9.42
(x + 7)^2 = - 35/9.42)
√(x + 7)^2=√- 35/9.42
x + 7 = - 1.927
x= - 1.927 - 7
x= - 8.927
V = 3π(- 8.927)^2 + 42π(- 8.927) + 147π
V=750.69 - 1177.29 + 461.58
<u>V=34.98</u>
h= 9 inches
V = 13πr2h
34.98 = 13(3.14) (r^2) (h)
34.98 = 40.82 (r^2) 9
34.98 = 367.38 r^2
34.98/ 367.38 = 367.38 r^2/ 367.38
0.095= r^2
W=80
365 subtract by all the other angles
Answer:
h(t) = -16t2 + 144
h(1) = -16(12) + 144 = 128 ft
h(2) = -16(22) + 144 = 80 ft
h(2) - h(1) = 80 - 128 = -48 ft
It fell 48 ft between t = 1 and t = 2 seconds.
It reaches the ground when h(t) = 0
0 = -16t2 + 144
t = √(144/16) s = 3s
It reaches the ground 3s after being dropped.
Step-by-step explanation: