Answer:
h = 76
Step-by-step explanation:
2 + h - 48 = 30
h + 2 - 48 = 30
h - 46 = 30
h - 46 + 46 = 30 + 46
h = 76
Answer:
5/6
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
We can simplify this fraction down further by divide both numerator and denominator by 2:
10/2 = 5
12/2 = 6
5/6 will be equivalent to 10/12
the first one is 0.00001
Step-by-step explanation:
its on the screen
The expression that represents the value of z is ![\sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
<h3>What are complex numbers?</h3>
Complex numbers are numbers that have real and imaginary parts
A complex number (n) is represented as:

From the above expression, we have:
- a represents the real part
- bi represents the imaginary part
Given that:

Rewrite the above expression as:

Take the cube roots of both sides
![z = \sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
The letters are not given.
Hence, the expression that represents the value of z is ![\sqrt[3]{3 + i\sqrt 3 }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%20%2B%20i%5Csqrt%203%20%7D)
Read more about complex numbers at:
brainly.com/question/11089283
Answer:
1595 ft^2
Step-by-step explanation:
The answer is obtained by adding the areas of sectors of several circles.
1. Think of the rope being vertical going up from the corner where it is tied. It goes up along the 10-ft side. Now think of the length of the rope being a radius of a circle, rotate it counterclockwise until it is horizontal and is on top of the bottom 20-ft side. That area is 3/4 of a circle of radius 24.5 ft.
2. With the rope in this position, along the bottom 20-ft side, 4.5 ft of the rope stick out the right side of the barn. That amount if rope allows for a 1/4 circle of 4.5-ft radius on the right side of the barn.
3. With the rope in the position of 1. above, vertical and along the 10-ft left side, 14.5 ft of rope extend past the barn's 10-ft left wall. That extra 14.5 ft of rope are now the radius of a 1/4 circle along the upper 20-ft wall.
The area is the sum of the areas described above in numbers 1., 2., and 3.
total area = area 1 + area 2 + area 3
area of circle = (pi)r^2
total area = 3/4 * (pi)(24.5 ft)^2 + 1/4 * (pi)(4.5 ft)^2 + 1/4 * (pi)(14.5 ft)^2
total area = 1414.31 ft^2 + 15.90 ft^2 + 165.13 ft^2
total area = 1595.34 ft^2