Slow cooling of hot magma leads to the formation of large crystals
Answer:
Yeild of CO2 is approximately 54g
Explanation:
Using reaction stoichiomety and coeeficients, and knowing O2 is limiting reactant, 54 g of CO2 is produced.
Answer:
C4H8O4
Explanation:
To determine the molecular formula, first, let us obtain the empirical formula. This is illustrated below:
From the question given, we obtained the following information:
C = 45.45%
H = 6.12%
O = 48.44%
Divide the above by their molar mass
C = 45.45/12 = 3.7875
H = 6.12/1 = 6.12
O = 48.44/16 = 3.0275
Divide by the smallest
C = 3.7875/3.0275 = 1
H = 6.12/3.0275 = 2
O = 3.0275/3.0275 = 1
The empirical formula is CH2O
The molecular formula is given by [CH2O]n
[CH2O]n = 132.12
[12 + (2x1) + 16]n = 132.12
30n = 132.12
Divide both side by the coefficient of n i.e 30
n = 132.12/30 = 4
The molecular formula is [CH2O]n = [CH2O]4 = C4H8O4
It would cost a little less than one thing but it was a little bit too late to get it to me
Answer:
Option C (a higher; the same) is the appropriate response.
Explanation:
Given:
Temperature,
T = 300 K (both
and
)
As we know,
Average speed of a molecule,
⇒ 
Thus, the average speed of
will be lower as its molar mass is greater than
.
Now,
⇒
(not depend on molar mass)
Hence, it will be the same.
The other three alternatives aren't connected to the scenario given. So the above is the correct answer.