Answer:
Force
If you're taking classical physics, simply stated, a force is a push or a pull of some sort. But there is one other very important thing to understand about Force. A true Force is always an interaction (at least from a classical perspective). That means that forces always come in pairs. This is stated in Newton's Third Law (equal and opposite forces). Every action must have a reaction. This is required for all true forces. Another consequence of this is that force is a vector, meaning it has a magnitude and a direction. The action and reaction will always be opposite in direction.
A lot of people will say F=ma. This is true. However, it is important to keep in mind that this definition is a calculational tool. It is more precise to say the Sum of all forces=ma. The point is that ma is not a force. Forces are things like weight, tension, normal, friction, gravity, electrostatic, magnetic, and various other applied forces. The sum of forces on an object equals the product of its mass times its acceleration.
It is important to keep in mind that the force is on the object that accelerates. Another way to state this is that objects cannot accelerate themselves. You cannot push yourself back (or forwards). But if you push a heavy object like a desk forwards, then the desk can push you back.
Energy
There are many kinds of energy. There are two important things to know.
Energy is the ability to do work. It doesn't mean work is being done, but that work can be done. (So you can see there is an intimate relationship between work and energy).
Energy is conserved. That means the total amount of energy is always constant. If the energy is a system changes somehow, that means some work was done in order to move the energy from one system to another.
Energy is also a scalar (given that Work is a scalar).
Answer:
C.) 1.5 kg
Explanation:
Start with the equation:

Plug in what you know, and solve:

Find matching soluation:
C.) 1.5 kg
Answer:
Research bias or Experimenter bias
Explanation:
Research bias or Experimenter bias is the phenomena that results when the researcher's preferences or hopes about the result influences the obtained outcomes.
This can also be explained as a result of the unconscious and subjective effect of the researcher's hopes on the data used in an experiment or the participants of the experiment or the outcome of the related experiment.
This can be avoided by the researcher by paying attention to the records made by the participants of the experiment and not based the outcome of the experiment on the basis of the his thinking.
I’ll refer to electromagnetic radiation as EMR.
Visible light is a very small subset of EMR. Many other ranges like infrared, ultraviolet, or gamma must be detected by special equipment.
EMR is what makes up light, and as we know from any high school physics class, light exhibits both particle-like properties (photoelectric effect and Compton scattering) and wave-like properties (refraction, diffraction, double-slit & single-slit experiment).
EMR can travel without a medium, like the vast emptiness of space. It can also travel with a medium. It can transmit through various materials albeit at a slower speed, like water, earth’s atmosphere, glass etc.
The propagation speed of EMR in space is 3x10^8 m/s, which is a speed unattainable by any of our current means of transportation. I would say that’s quite fast.