Answer:
See below
Explanation:
rho = R A/l R = resistance A = cross sectional area l = length
1: Weather has a somewhat unpredictable pattern.
2: They can misinterpret the pattern of weather that looks like snow.
3: If they predict it early then the weather can change making there interpretation wrong.
Hope that helps a little bit. Please don’t report me I tried.
In physics, there are already derived equation that are based on Newton's Law of Motions. The rectilinear motions at constant acceleration have the following equations:
x = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
x is the distance travelled
v₁ is the initial velocity
v₂ is the final velocity
a is the acceleration
t is the time
Now, we solve first the second equation. Since it mentions that the car comes eventually to a stop, v₂ = 0. Then,
-5 = (0-v₁)/t
-5t = -v₁
v₁ = 5t
We use this new equation to substitute to the first one:
x = v₁t + 1/2 at²
15 = 5t(t) + 1/2(-5)t²
15 = 5t² - 5/2 t²
15 = 5/2 t²
5t² = 30
t² = 30/5 = 6
t = √6 = 2.45
Therefore, the time it took to travel 15 m at a deceleration of -5 m/s² is 2.45 seconds.
<h2>Right answer: Sea breeze </h2>
The sea breeze is formed because during the day the surface of the land on the coast tends to warm up before and more than the surface of the sea. This difference in temperature between these two air masses means that on a sunny day the land warms up much more than the ocean causing a small area of low pressure.
Then, the air rises as the land warms it and the colder air located on the surface of the sea forms a high pressure zone that makes this air mass tend to occupy the space left by the warmer air that has ascended on the coast. Therefore, the mass of air of a high pressure on the ocean always tends to move towards the zone of low pressure located on the coast.
It is important to note that the <u>sea breeze blows perpendicularly to the coast</u> and that the best breezes are formed in the spring and summer seasons because during the spring the water temperature is still cold and during the summer the sun produces high temperatures over the land in the coast.
<h2>So, <u>
the greater the temperature contrast </u>
between the land and the sea, <u>
the greater the force of the wind generated</u>
.</h2>
Answer: a= 4.4ms-2
Displacement= 26.95 m
Explanation:
First, the speed in km/hr must be converted to m/s so that we can apply it in solving the question. The motion started from rest hence the initial velocity is 0m/s. The average displacement is also obtained from the equations of motion as shown in the image attached.