Answer:
262.5 Joules
Explanation:
You find the kinetic energy of multiplying half of the mass by the velocity. In this word problem it tells you the mass so you divide it by 2. That answer is 2.625, you then multiply that by the velocity, in this instance it's 1.0 x 10^2 mi/h.
The unit in kinetic energy is Joules. This is actually a really important part in chemistry and physics.
Using the chart that has been provided, we may determine water temperature. We do this by drawing a straight line form the bottom scale which has the ppm of oxygen dissolved to the middle scale which has the percentage saturation.
The line starts from 11.5 ppm on the bottom scale and goes to 90% on the middle scale. Next, we continue this line, without changing its slope, to the third scale showing temperature. We see that it crosses the temperature scale at 4°C.
The temperature of the water is 4 °C.
Answer:
23.8 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.0380M potassium iodide solution that contains 150 g of potassium iodide. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of potassium iodide is 166.00 g/mol. The moles corresponding to 150 grams are:
150 g × (1 mol/166.00 g) = 0.904 mol
0.904 moles of potassium iodide are contained in an unknown volume of a 0.0380 mol/L potassium iodide solution. The volume is:
0.904 mol × (1 L/0.0380 mol) = 23.8 L