Answer:
The correct option is;
D) 62 in²
Step-by-step explanation:
Here we have from the drawing, the dimensions of the right rectangular prism are;
Height = 2 in.
Width = 5 in
Length = 3 in
Therefore the surface area is found as follows;
Surface area of right rectangular prism = 2 × Height × Width + 2 × Height × Length + 2 × Width × Length
Surface area of right rectangular prism = 2 × 2 × 5 + 2 × 2× 3+ 2 × 5× 3 = 20 + 12 + 30 = 62 in².
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Variable: a symbol for a number you don’t know yet
inequality: 60=22+8x
3.06, 3 1/6, 3 3/4, 3.8.
Hope that helps.