Nitrogen has five valence electrons
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J


ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Answer:
34.3 g NH3
Explanation:
M(H2) = 2*1 = 2 g/mol
M(N2) = 2*14 = 28 g/mol
M(NH3) = 14 + 3*1 = 17 g/mol
23.6 g H2* 1 mol/2 g = 11.8 mol H2
28.3 g N2 * 1 mol/28 g = 1.01 mol N2
3H2 + N2 ------> 2NH3
from reaction 3 mol 1 mol
given 11.8 mol 1.01 mol
We can see that H2 is given in excess, N2 is limiting reactant.
3H2 + N2 ------> 2NH3
from reaction 1 mol 2 mol
given 1.01 mol x
x = 2*1.01/1= 2.02 mol NH3
2.02 mol * 17g/1 mol ≈ 34.3 g NH3