Answer:
a₁ = 0.63 m/s² (East)
a₂ = -1.18 m/s² (West)
Explanation:
m₁ = 95 Kg
m₂ = 51 Kg
F = 60 N
a₁ = ?
a₂ = ?
To get the acceleration (magnitude and direction) of the man we apply
∑Fx = m*a (⇒)
F = m₁*a₁ ⇒ 60 N = 95 Kg*a₁
⇒ a₁ = (60N / 95Kg) = 0.63 m/s² (⇒) East
To get the acceleration (magnitude and direction) of the woman we apply
∑Fx = m*a (⇒)
F = -m₂*a₂ ⇒ 60 N = -51 Kg*a₂
⇒ a₂ = (60N / 51Kg) = -1.18 m/s² (West)
For every case we apply Newton’s 3
d Law
Hey there!:
Here the Statement - D is correct.
Because Orbitals containing the core electrons are more attracted towards nuclear charge and hence less shilded from nuclear charge than an orbital that doesn't penetrate. Also due to more attraction between the orbital containing core electron and nucleus, it will have less energy.
Hope this helps!
Answer:
it comprises of the DNA/RNA bipolymer molecules
Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.
'In transverse waves, the particles of the medium move perpendicular to the direction of the flow of energy' is true for transverse waves only.
'In longitudinal waves, the particles of the medium move parallel to the direction of the flow of energy' is true for longitudinal waves only.
'Many wave motions in nature are a combination of longitudinal and transverse motion' is true for both longitudinal and transverse waves.
<u>Explanation:</u>
Longitudinal waves are those where the direction of propagation of particles are parallel to the medium' particles. While transverse waves propagate perpendicular to the medium' particles.
As wave motions are assumed to be of standing waves which comprises of particles moving parallel as well as perpendicular to the medium, most of the wave motions are composed of longitudinal and transverse motion.
So the option stating the medium' particle moves perpendicular to the direction of the energy flow is true for transverse waves. Similarly, the option stating the medium' particle moves parallel to the direction of flow of energy is true for longitudinal waves only.
And the option stating that wave motions comprises of combination of longitudinal and transverse motion is true for both of them.