Search Results<span>Use BFS to determine the length of the shortest v-w-path. Then use DFS to find thenumber of the v-w-shortest paths such that two nodes are connected and the length of path equals to the output of BFS. But the running time of this plan is O(m+n)+O(m+n). Also I've tried to modify the Dijkstra algorithm.</span>
The question is oversimplified, and pretty sloppy.
Relative to the Earth . . .
The Moon is in an elliptical orbit around us, with a period of
27.32... days, and with the Earth at one focus of the ellipse.
Relative to the Sun . . .
The Moon is in an elliptical orbit around the Sun, with a period
of 365.24... days, and with the Sun at one focus of the ellipse,
and the Moon itself makes little dimples or squiggles in its orbit
on account of the gravitational influence of the nearby Earth.
I'm sorry if that seems complicated. You know that motion is
always relative to something, and the solar system is not simple.
By definition, the law of conservation of energy states that:
Ei = Ef
Where,
Ei: initial energy
Ef: final energy
Therefore, no matter the type of energy, always the final energy is equal to the final energy.
Energy can be transformed into another type of energy. For example, the potential energy can be transformed into kinetic energy.
Also, energy is not created, nor destroyed.
Answer:
The following is not true about the Law of Conservation of Energy:
A. It states that the total energy in the universe keeps increasing.
The correct answer is a I hope that helped enjoy the rest of your weekend