1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
3 years ago
15

A pair of badminton rackets was originally marked at $30 and has been sold $24. What was the percent of discount

Mathematics
1 answer:
erastovalidia [21]3 years ago
4 0

Answer:

20%

Step-by-step explanation:

Discount= $30 - $24 = $6

Discount%= \frac{6}{30} × \frac{100}{1} = 20%

You might be interested in
-6 minus -2 1/2<br>step by step explanation please ​
tatuchka [14]

Turn fraction into a decimal.

-2 1/2 = -2.5

Remember that when you subtract a negative number it automatically changes it to adding a positive number.

-6 + 2.5 = -3.5

Hope This Helped! Good Luck!

7 0
3 years ago
Read 2 more answers
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Multiply. −213⋅112 Enter your answer, in simplest form, in the box
Vaselesa [24]

Answer:

23,856

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Looking for the answer to this
SashulF [63]
<h2><u>Requi</u><u>red</u><u> Answer</u><u> </u><u>:</u><u>-</u></h2>

Given system of linear equations are ,

  • x + y = 2
  • -3x + y = 2

And we need to find the Solution of the linear equation . So let's Firstly number the equations .

\large{\red{\frak{ Given}}}\begin{cases} \sf x + y = 2\qquad ..........(i) \\\\\sf -3x + y = 2 \qquad ..........(ii) \\\end{cases}

<u>→</u><u> </u><u>Multipl</u><u>ying</u><u> </u><u>equⁿ</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>by</u><u> </u><u>3</u><u> </u><u>,</u>

=> 3 ( x + y ) = 2*3

=> 3x + 3y = 6

<u>→</u><u> </u><u>Addin</u><u>g</u><u> </u><u>the</u><u> </u><u>two</u><u> </u><u>equations </u><u>,</u><u> </u>

=> 3x + 3y -3y + y = 6 + 2

=> 4y = 8

=> y = 8/4

=> y = 2

<u>→</u><u> </u><u>Put</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>in</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>,</u>

=> x + y = 2

=> x + 2 = 2

=> x = 2- 2

=> x = 0

<h3><u>★</u><u> </u><u>Hence</u><u> the required solution is ( 0 , 2 ) .</u></h3>
7 0
3 years ago
The image of a dust mite from a scanning electron microscope is 1.5×10 to the 2nd millimeters wide. The image is 5×10 to 2nd tim
Vinil7 [7]
600 millimeters is the accuracy
7 0
2 years ago
Read 2 more answers
Other questions:
  • How many pages does Melanies book have?
    8·1 answer
  • Your father earned​ $34,000 per year in 1984. To the nearest​ dollar, what is that equivalent to in 2014 if the CPI in 2014 is 2
    12·1 answer
  • Can someone please answer this correctly? Please show work so that i know how to do this.
    8·1 answer
  • Which has more whole number solutions: the AND or the OR statement? lease help me as soon as you can
    9·1 answer
  • Question text
    15·1 answer
  • Which number is the opposite of the number 2? its -2 right?
    14·1 answer
  • Sawyer was last year's PI Day
    13·1 answer
  • A carpenter needs to cut two pieces of trim around a window at 34 3/8 inches each. If the saw blade will remove 1/8 of an inch o
    10·1 answer
  • If the measurement of Angle 6 = 50 degrees, then the measurement of Angle 3 = 50 degrees
    11·2 answers
  • Find the number of choices that are possible if you choose one of 3 kinds of fruit and one of 3 kinds of vegetables.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!