Turn fraction into a decimal.
-2 1/2 = -2.5
Remember that when you subtract a negative number it automatically changes it to adding a positive number.
-6 + 2.5 = -3.5
Hope This Helped! Good Luck!
We are given with a limit and we need to find it's value so let's start !!!!
But , before starting , let's recall an identity which is the <em>main key</em> to answer this question
Consider The limit ;
Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

Using the above algebraic identity ;


Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !


Now , using the same above identity ;


Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

Now , take<em> (√x-2) common</em> in numerator ;

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

Now , <em>putting the limit ;</em>

Answer:
23,856
Step-by-step explanation:
<h2>
<u>Requi</u><u>red</u><u> Answer</u><u> </u><u>:</u><u>-</u></h2>
Given system of linear equations are ,
And we need to find the Solution of the linear equation . So let's Firstly number the equations .
<u>→</u><u> </u><u>Multipl</u><u>ying</u><u> </u><u>equⁿ</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>by</u><u> </u><u>3</u><u> </u><u>,</u>
=> 3 ( x + y ) = 2*3
=> 3x + 3y = 6
<u>→</u><u> </u><u>Addin</u><u>g</u><u> </u><u>the</u><u> </u><u>two</u><u> </u><u>equations </u><u>,</u><u> </u>
=> 3x + 3y -3y + y = 6 + 2
=> 4y = 8
=> y = 8/4
=> y = 2
<u>→</u><u> </u><u>Put</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>in</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>,</u>
=> x + y = 2
=> x + 2 = 2
=> x = 2- 2
=> x = 0
<h3>
<u>★</u><u> </u><u>Hence</u><u>
the required solution is ( 0 , 2 ) .</u></h3>