Answer:
a Anaphase I
b Metaphase I
c Telophase I
d Anaphase II
e Prophase I
f Telophase II
Explanation:
Prophase I begins after the DNA has been duplicated, as shown in picture e. The chromosomes are condensed, and also visible, which is apparent in picture e.
The next stage is called Metaphase I, in which the pairs of homologous chromosomes align at The the centre of the cell and the spindle fibres attach, as shown in picture b.
The pairs of chromosomes are pulled apart to opposite poles of the cell by the spindle fibres., as shown in picture a. This stage is called Anaphase I.
Then, a process called Telophase I occurs, when the cell divides into two daughter cells. One of these cells is shown in picture c.
Picture d shows the stage Anaphase II, where the spindle has attached and the chromatids are pulled to the opposite poles of the cell.
The final picture left is picture f, which shows the daughter cell at the end of meiosis II, where the nuclear envelope is reforming, as in telophase II.
The virus needs to speak the molecular language of cells. This is how he manages to dominate and enslave them so that they become factories for new viruses, producing the proteins that the infectious agent requires to assemble its descendants. If this conversation is not fine-tuned, even if the virus has the key and enters, it is doomed to failure.
<h3>Why does a virus lethal to us not infect animals?</h3>
For a virus to be able to enter a cell, it must have the right key. And this key, which are the proteins on the surface of viruses, has to enter the correct lock, the receptors that are on the cell membrane. Cells are actually houses with many different doors and locks. Some viruses have keys that open the lock of any cell and any kind of host, and others do not, so the infection caused by viruses is specific.
With this information, we can conclude that some viruses have keys that open the lock of any cell and any kind of host, and others do not, so the infection caused by viruses is specific.
Learn more about virus in brainly.com/question/1427968
#SPJ1
Probably through a electron microscope either TEM or SEM. or possibly a picture through the microscope. I hope that helped.
Answer:
Evidence for evolution comes from many different areas of biology:
Anatomy. Species may share similar physical features because the feature was present in a common ancestor (homologous structures).
Molecular biology. DNA and the genetic code reflect the shared ancestry of life. DNA comparisons can show how related species are.
Biogeography. The global distribution of organisms and the unique features of island species reflect evolution and geological change.
Fossils. Fossils document the existence of now-extinct past species that are related to present-day species.
Direct observation. We can directly observe small-scale evolution in organisms with short lifecycles (e.g., pesticide-resistant insects).