Answer:
The product that must be produced to kill a bacterium —which causes a disease— is an antibiotic, which through biotechnology can investigate the structure of the bacterium and synthesize the chemical formula needed to produce antibiotics in high amounts.
Explanation:
Antibiotics are specific medicines for the treatment of infectious diseases, produced by bacteria. <u>Antibiotics can kill bacteria and prevent their replication</u>.
If a disease is produced by bacteria, the product that is necessary to kill those microbes is an antibiotic, for which biotechnology is useful.
By using biotechnology —a branch of biology that uses technology as a research and development tool— it is possible:
- <em>Know the structure, functions and behavior of pathogenic bacterial strains.
</em>
- <em>Create chemical formulas -antibiotics- that serve to effectively eliminate bacteria, and cure infectious diseases.
</em>
- <em>The synthesis and production of antibiotics on a large scale, allowing their sufficient availability for use.</em>
<span>Species is a group of reproducing populations that are isolated from other groups. </span>
Answer:
Kristin's answer is the best.
Explanation:
It is the only correct answer.
The DNA polymerases are enzymes that create DNA molecules by assembling nucleotides, the building blocks of DNA. These enzymes are essential to DNA replication and usually work in pairs to create two identical DNA strands from one original DNA molecule. During this process, DNA polymerase “reads” the existing DNA strands to create two new strands that match the existing ones.
Every time a cell divides, DNA polymerase is required to help duplicate the cell’s DNA, so that a copy of the original DNA molecule can be passed to each of the daughter cells. In this way, genetic information is transmitted from generation to generation.
Before replication can take place, an enzyme called helicase unwinds the DNA molecule from its tightly woven form. This opens up or “unzips” the double stranded DNA to give two single strands of DNA that can be used as templates for replication.
DNA polymerase adds new free nucleotides to the 3’ end of the newly-forming strand, elongating it in a 5’ to 3’ direction. However, DNA polymerase cannot begin the formation of this new chain on its own and can only add nucleotides to a pre-existing 3'-OH group. A primer is therefore needed, at which nucleotides can be added. Primers are usually composed of RNA and DNA bases and the first two bases are always RNA. These primers are made by another enzyme called primase.
Although the function of DNA polymerase is highly accurate, a mistake is made for about one in every billion base pairs copied. The DNA is therefore “proofread” by DNA polymerase after it has been copied so that misplaced base pairs can be corrected. This preserves the integrity of the original DNA strand that is passed onto the daughter cells.

A surface representation of human DNA polymerase β (Pol β), a central enzyme in the base excision repair (BER) pathway. Image Credit: niehs.nih.gov
Structure of DNA polymerase
The structure of DNA polymerase is highly conserved, meaning their catalytic subunits vary very little from one species to another, irrespective of how their domains are structured. This highly conserved structure usually indicates that the cellular functions they perform are crucial and irreplaceable and therefore require rigid maintenance to ensure their evolutionary advantage.
A pegasus can be anatomically possible through the addition of features such as wings to a horse.
<h3>What is Anatomy?</h3>
This is referred ti a branch of science which studies the body structures of organisms in the environment.
A pegasus is a winged horse which is why the addition of wings will make it anatomically possible.
Read more about Pegasus here brainly.com/question/16483326
#SPJ1