mass = 20.48 g
moles=0.1895
<h3>Further explanation</h3>
In general, the gas equation can be written
<h3>Pv=nRT </h3>
where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08205 L.atm / mol K
T = temperature, Kelvin
P=0.23 atm
V=20 L
T=23+273=296 K

mass SF₄ (MW=108,07 g/mol) :

Nitrogen trifluoride is the inorganic compound with the formula NF3. This nitrogen-fluorine compound is a colorless, odorless, nonflammable gas. It finds increasing use as an etchant in microelectronics.
(If you mean by a gas of some sort)
At equilibrium the concentrations of:
[HSO₄⁻] = 0.10 M;
[SO₄²⁻] = 0.037 M;
[H⁺] = 0.037 M;
There is initially very little H+ and no SO₄²⁻ in the solution. A salt is KHSO₄⁻. All KHSO₄⁻ will split apart into K⁺ and HSO₄⁻ ions. [HSO₄⁻] will initially be present at a concentration of 0.14 M.
HSO₄⁻ will not gain H⁺ to produce H₂SO₄ since H₂SO₄ is a strong acid. HSO₄⁻ may act as an acid and lose H⁺ to form SO₄²⁻. Let the final H⁺ concentration be x M. Construct a RICE table for the dissociation of HSO₄²⁻.
R
⇄ 
I 
C

E

×
for
. As a result,
![\frac{[H^+]. [SO_4^2^-]}{HSO_4^-} = K_a](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D.%20%5BSO_4%5E2%5E-%5D%7D%7BHSO_4%5E-%7D%20%3D%20K_a)
is large. It is no longer valid to approximate that
at equilibrium is the same as its initial value.

×
× 
Solving the quadratic equation for
since
represents a concentration;

Then, round the results to 2 significant figure;
Learn more about concentration here:
brainly.com/question/14469428
#SPJ4
B , your products are on the right side of the reaction. The reactants are on the left side
H2 is a covalent bond. Each hydrogen atom shares its single electron to the other, so each hydrogen has two valence electrons (full outer shell).