the refractive index of the liquid is 1.476
The refractive index, which has no dimensions, measures how quickly light passes through a substance.
It can also be described as the difference between the speed of light in a vacuum and a medium.
Refractive index is equal to the product of the light's liquid and vacuum speeds.
Therefore.
speed of light in vacuum = 4.96 km/t
speed of light in liquid = 3.36 km/t
Refractive index = 4.96/3.36
Refractive index =1.476
Therefore, the refractive index of the liquid is 1.476
To learn more about refractive index
brainly.com/question/23750645
#SPJ4
The pressure of a gas is the force that a gas exerts per unit area of the container.
Pressure is defined as force per unit area. Gas molecules are constantly colliding against the walls of the container. The pressure of the gas is the force the gas is exerting on its container.
Since temperature is defined as the average kinetic energy of the molecules of a gas then the higher the temperature, the faster the particles move.
The volume of a container refers the size if the container.
The pressure of a gas is inversely proportional to its volume according to Boyle's law. Thus implies that if the pressure of the gas goes up, the volume has to go down.
For a compound to be called an acid, it must contain H+ and H3O+ when dissolved in water.
For a compound to be called a base, the compound must dissolve in water to yield hydroxide ions.
Learn more: brainly.com/question/11543614
Answer:
Oh, you need to get the blue dots, and move them to the table or graph to plot them!
Hope that makes sense!
The gastric chief cells of the stomach secrete enzymes for protein breakdown (inactive pepsinogen, and in infancy rennin). Hydrochloric acid activates pepsinogen into the enzyme pepsin, which then helps digestion by breaking the bonds linking amino acids, a process known as proteolysis.
Light energy is turned into chemical energy when <span>when a photochemically excited special chlorophyll molecule of the photosynthetic reaction center loses an electron, undergoing an oxidation reaction.
</span>