This is a problem of maxima and minima using derivative.
In the figure shown below we have the representation of this problem, so we know that the base of this bin is square. We also know that there are four square rectangles sides. This bin is a cube, therefore the volume is:
V = length x width x height
That is:

We also know that the <span>bin is constructed from 48 square feet of sheet metal, s</span>o:
Surface area of the square base =

Surface area of the rectangular sides =

Therefore, the total area of the cube is:

Isolating the variable y in terms of x:

Substituting this value in V:

Getting the derivative and finding the maxima. This happens when the derivative is equal to zero:

Solving for x:

Solving for y:

Then, <span>the dimensions of the largest volume of such a bin is:
</span>
Length = 4 ftWidth = 4 ftHeight = 2 ftAnd its volume is:
Answer:
Since the value of f(0) is negative and the value of f(1) is positive, then there is at least one value of x between 0 and 1 for which f(x) =0.
Step-by-step explanation:
The equation f(x) given is:

For x = 0. the value of the expression is:

For x = 1, the value of the expression is:

Since the value of f(0) is negative and the value of f(1) is positive, then there is at least one value of x between 0 and 1 for which f(x) =0.
In other words, there is at least one solution for the equation between x=0 and x=1.
Answer: The area of the notebook that the sticker covers is 128 cm^2
Step-by-step explanation:
The equation for the area of a rectangle should be:

-The height of the stickers measures 16 cm:

-So, if the base is half as long as the height, you divide it by 2:

-Then, you substitute it:
· 
-Result:

Answer:
No
Step-by-step explanation:
As the hypotenuse is not equal to base and perpendicular.