Answer:
3.47 ×10^-10
Explanation:
The equation of the reaction is 2Cr3+(aq) + Pb(s)------->2Cr2+(aq) + Pb2+(aq)
A total of two moles of electrons were transferred in the process. The chromium was reduced while the lead was oxidized. Hence the lead species will constitute the oxidation half equation and the chromium will constitute the reduction half equation.
E°cell = E°cathode - E°anode
E°cathode = -0.41 V
E°anode = -0.13 V
E°cell = -0.41 -(-0.13) = -0.28 V
From
E°cell = 0.0592/n log K
n= 2, K= the unknown
-0.28 = 0.0592/2 log K
log K = -0.28/0.0296
log K = -9.4595
K = Antilog ( -9.4595)
K= 3.47 ×10^-10
Answer:
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 grams
mass of oxygen = 16 grams
molar mass of surcose = 12(12) + 22(1) + 11(16) = 342 grams
number of molecules = number of moles x Avogadro's number
number of moles = number of molecules / Avogadro's number
number of moles = (2.2x10^17) / (6.02x10^23) = 3.6544 x 10^-7 moles
number of moles = mass / molar mass
mass = number of moles x molar mass
= 1.7 x 10^17/6.022 x 10^23.
In order to deprotonate an acid, we must remove protons in order to achieve a more stable conjugate base. For this example, we can use the relationship between carboxylic acid and hydroxide.
Deprotonation is the removal of a proton from a specific type of acid in reaction to its coming into contact with a strong base. The compound formed from this reaction is known as the conjugate base of that acid. The opposite process is also possible and is when a proton is added to a special kind of base. This is a process referred to as protonation, which forms the conjugate acid of that base.
For the example we have chosen to give, the conjugate base is the carboxylate salt. This would be the compound formed by the deprotonated carboxylic acid. The base in question was strong enough to deprotonate the acid due to the greater stability offered as a conjugated base.
To learn more visit:
brainly.com/question/5613072?referrer=searchResults