As you move from left to right of the periodic table, the element becomes more negative.
Answer:
1 M
Explanation:
The molarity of a solution, M, is a measure of the concentration of that solution and it refers to the number of moles of solute (mol) per liter (L) of solution. The molarity (M) can be calculated using the formula:
M = number of moles (n) /volume (V)
In this question, a 500 ml aqueous solution of Na3PO4 was prepared using 82g of the solute.
Molar mass of Na3PO4 = 23(3) + 15 + 16(4)
= 69 + 31 + 64
= 164g/mol
Mole = mass/molar mass
mole = 82/164
mole = 0.5 mol
Volume in Litres (L) = 500 ml ÷ 1000 = 0.500L
Therefore, Molarity (M) = 0.5/0.500
Molarity = 1 M or 1 mol/L
Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
Answer:
If an atom looses all of its electrons then it will become positively charged. It will also turn into an Ion.
Explanation:
Answer: Option (d) is the correct answer.
Explanation:
An equation in which electrolytes are represented in the form of ions is known as an ionic equation.
Strong electrolytes easily dissociate into their corresponding ions. Hence, they form ionic equation.
is a strong acid and
is a strong bases, therefore, both of them will dissociate into ions.
Thus, total ionic equation will be as follows.
