The relationship between Celsius and kelvin is that degrees Kelvin is equal to degrees Celsius + 273.15. That means that the freezing point of water (0°C) is 273.15° kelvin. This makes an additive relationship between the two quantities, so quantities such as the boiling point and freezing point of water are the same distance apart on the Kelvin scale (100 degrees). This means that kelvin has the same magnitude as Celsius.
As we know that wavelength and frequency is inversely proportional to each other. Greater the wavelength smaller the frequency and vice versa.
Solution:
The relation between wavelength and frequency is as follow,
υ = c / λ
where
υ = frequency = ?
c = velocity of light = 3.0 × 10⁸ ms⁻¹
λ = wavenumber = 542 nm = 542 × 10⁻⁹ m
Putting the given values,
υ = 3.0 × 10⁸ ms⁻¹ / 542 × 10⁻⁹ m
Result:
υ = 5.53 × 10¹⁴ s⁻¹
Water can exist in three states.
1) Solid State: Called Ice.
2) Liquid State: Called Liquid Water.
3) Gas State: Called Steam.
Remember:
The physical states of a matter depends upon the interactions between the particles of that substance. The interactions are very strong in solid state, strong in liquid state and very weak or negligible in gas state.
If you want to change the state from solid to liquid, or from liquid to gas you will have to provide energy in order to break the interactions between the molecules. Stronger the interactions, the more is energy required to break the interactions.
Water need more energy to convert from liquid to gas phase because hydrogen bond interactions are present among the molecules of water. And the hydrogen bonds are strong enough. Hence in order to break these interactions high energy is required.
Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
Answer:D
Explanation:because The farther an object is from a magnet are apart from each other, the weaker the repulsion force will be.