<u>Answer:</u> The number of moles of HI in the solution is
moles.
<u>Explanation:</u>
We are given:

To calculate the concentration of a substance, we use the equation:
......(1)
- Concentration of ammonia:
![[NH_3]=\frac{0.405mol}{4.90L}=0.083mol/L](https://tex.z-dn.net/?f=%5BNH_3%5D%3D%5Cfrac%7B0.405mol%7D%7B4.90L%7D%3D0.083mol%2FL)
- Concentration of ammonium iodide:
![[NH_4I]=\frac{1.45mol}{4.90L}=0.30mol/L](https://tex.z-dn.net/?f=%5BNH_4I%5D%3D%5Cfrac%7B1.45mol%7D%7B4.90L%7D%3D0.30mol%2FL)
For the given chemical reaction:

The expression of
for above equation follows:
![K_c=\frac{[HI][NH_3]}{[NH_4I]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5BNH_3%5D%7D%7B%5BNH_4I%5D%7D)
Putting values in above equation, we get:
![7.0\times 10^{-5}=\frac{[HI]\times 0.083}{0.30}](https://tex.z-dn.net/?f=7.0%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BHI%5D%5Ctimes%200.083%7D%7B0.30%7D)
![[HI]=2.53\times 10^{-4}](https://tex.z-dn.net/?f=%5BHI%5D%3D2.53%5Ctimes%2010%5E%7B-4%7D)
Calculating the moles of hydrogen iodide by using equation 1, we get:

Hence, the number of moles of HI in the solution is
moles.
Dissociation of Pb₃(PO₄)₂ is;
Pb₃(PO₄)₂(s) ⇆ 3Pb²⁺(aq) + 2PO₄³⁻(aq)
initial - -
change -X +3X +2X
Equilibrium 3X 2X
Ksp = [Pb²⁺(aq)]³ [PO₄³⁻(aq)]²
1.0 x 10⁻⁵⁴ = (3X)³ (2X)²
1.0 x 10⁻⁵⁴ = 108X⁵
X = 6.21 x 10⁻¹² M
Hence the molar solubility of Pb₃(PO₄)₂ is 6.21 x 10⁻¹² M.
Answer:
CH₂O
Explanation:
Empirical formula:
It is the simplest formula gives the ratio of atoms of different elements in small whole number.
Molecular formula:
Molecular formula shows the actual whole number ratio of elements present in compound.
Given molecular formula: C₆H₁₂O₆
Empirical formula = CH₂O
In molecular formula six moles of carbon six moles of oxygen and 12 moles of hydrogen are present.
To get the smallest whole number we divide the each number by 6 and we get CH₂O which is empirical formula of C₆H₁₂O₆.
I think this one is the organelles.
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.