144 cm3 is what i came up with!
Answer:
it is number 3 (-1/5)
Step-by-step explanation:
Answer:
The dimensions of the can that will minimize the cost are a Radius of 3.17cm and a Height of 12.67cm.
Step-by-step explanation:
Volume of the Cylinder=400 cm³
Volume of a Cylinder=πr²h
Therefore: πr²h=400

Total Surface Area of a Cylinder=2πr²+2πrh
Cost of the materials for the Top and Bottom=0.06 cents per square centimeter
Cost of the materials for the sides=0.03 cents per square centimeter
Cost of the Cylinder=0.06(2πr²)+0.03(2πrh)
C=0.12πr²+0.06πrh
Recall: 
Therefore:



The minimum cost occurs when the derivative of the Cost =0.






r=3.17 cm
Recall that:


h=12.67cm
The dimensions of the can that will minimize the cost are a Radius of 3.17cm and a Height of 12.67cm.
You just do 50 - 43.89
It’s not that hard
Get a brain g
Answer:
The second option shows the correct translation of 3 units to the right and 1 unit down.