Answer:
<h2>
y = -4/9</h2>
Step-by-step explanation:
Given the system of equations y = 3/2 x − 6, y = −9/2 x + 21, since both expressions are functions of y, we will equate both of them to find the variable x;
3/2 x − 6 = −9/2 x + 21,
Cross multiplying;
3(2x+21) = -9(2x-6)
6x+63 = -18x+54
collecting the like terms;
6x+18x = 54-63
24x = -9
x = -9/24
x = -3/8
To get the value of y, we will substitute x = -3/8 into any of the given equation. Using the first equation;
y = 3/2x-6
y = 3/{2(-3/8)-6}
y = 3/{(-3/4-6)}
y = 3/{(-3-24)/4}
y = 3/(-27/4)
y = 3 * -4/27
y = -4/9
Hence, the value of y is -4/9
Answer: C) F(4) = 0
Detailed Explanation:
A zero/root of a polynomial is a value of the variable which makes the value of the polynomial to 0.
Therefore, when (x - 4) is a Factor :-
=> x - 4 = 0
=> x = 4
=> x = 4 is the Zero of the Polynomial.
Answer:
<em>(x - 2)^2 + (y + 1)^2 = 26</em>
Step-by-step explanation:
A circle with center O(2, -1) that passes through the point A(3, 4).
=> The radius of this circle is OA which could be calculated by:
OA = sqrt[(3 - 2)^2 + (4 - (-1))^2] = sqrt[1^2 + 5^2] = sqrt[26]
The equation of a circle with center O(a, b) and radius r could be written as:
(x - a)^2 + (y - b)^2 = r^2
=> The equation of circle O above with center O(2, -1) and radius = sqrt(26) is shown as:
(x - 2)^2 + (y - (-1))^2 = (sqrt(26))^2
<=>(x - 2)^2 + (y + 1)^2 = 26
Hope this helps!
Answer:
<h2> 18.57</h2><h2>- 3.62</h2>
___________________
<h2> 14.95</h2>