The factors are
(m-6)(m+6)
Explanation:
Group the first two terms and factor out the common factor:
i.e m(m-6)
Repeat the procedure for terms 3 and 4.
6(m-6)
Regrouping:
m(m-6)+6(m-6)
On factoring out (m-6), we get:
(m-6)(m+6)
Answer:
D
Step-by-step explanation:
Answer:
12 to the second power.
Step-by-step explanation:
1.Disc method.
In this method the volume is given by:
![\boxed{V=\pi\int\limits_a^b\big[f(x)\big]^2}](https://tex.z-dn.net/?f=%5Cboxed%7BV%3D%5Cpi%5Cint%5Climits_a%5Eb%5Cbig%5Bf%28x%29%5Cbig%5D%5E2%7D)
so:
![V=\pi\int\limits_1^3x^4\,dx=\boxed{\pi\int\limits_1^3\big[x^2\big]^2\,dx}](https://tex.z-dn.net/?f=V%3D%5Cpi%5Cint%5Climits_1%5E3x%5E4%5C%2Cdx%3D%5Cboxed%7B%5Cpi%5Cint%5Climits_1%5E3%5Cbig%5Bx%5E2%5Cbig%5D%5E2%5C%2Cdx%7D)
A) Function

over the interval
![[1,3]](https://tex.z-dn.net/?f=%5B1%2C3%5D)
B) We use disk method and f(x) is function of variable x, so we <span>rotate the curve about the x-<span>axis.
2. Shell method.
In this case volume is given by:
</span></span>

So there will be:

A) Function

over the interval
![[1,3]](https://tex.z-dn.net/?f=%5B1%2C3%5D)
B) We use shell method and f(x) is function of variable x, so we <span>rotate the curve about the y-<span>axis.</span></span>
You're correct with the answer you have selected. It's 7.2 x 10^7