Current amount in account
P=36948.61
Future value of this amount after n years at i=11% annual interest
F1=P(1+i)^n
=36948.61(1.11)^n
Future value of $3000 annual deposits after n years at i=11%
F2=A((1+i)^n-1)/i
=3000(1.11^n-1)/0.11
We'd like to have F1+F2=280000, so forming following equation:
F1+F2=280000
=>
36948.61(1.11)^n+3000(1.11^n-1)/0.11=280000
We can solve this by trial and error.
The rule of 72 tells us that money at 11% deposited will double in 72/11=6.5 years, approximately.
The initial amount of 36948.61 will become 4 times as much in 13 years, equal to approximately 147800 by then.
Meanwhile the 3000 a year for 13 years has a total of 39000. It will only grow about half as fast, namely doubling in about 13 years, or worth 78000.
Future value at 13 years = 147800+78000=225800.
That will take approximately 2 more years, or 225800*1.11^2=278000.
So our first guess is 15 years, and calculate the target amount
=36948.61(1.11)^15+3000(1.11^15-1)/0.11
=280000.01, right on.
So it takes 15.00 years to reach the goal of 280000 years.
Answer:
x = -7
Step-by-step explanation:
Answer: increasing
and asymptote
Step-by-step explanation:
Answer:
1.14 products per hour of labor
Step-by-step explanation:
To calculate the daily productivity would be the amount of products per hour of labor.
That is: 400 products / 350 hours of labor, and that is approximately 1.14 products per hour of labor.
Which means that for every hour of labor, 1.14 products are produced in one day, which would be a factor of productivity.
Answer:
The answer is 
Step-by-step explanation:
Just did this problem