The mass of a sample of alcohol is found to be = m = 367 g
Hence, it is found out that by raising the temperature of the given product, the mass of alcohol would be 367 g.
Explanation:
The Energy of the sample given is q = 4780
We are required to find the mass of alcohol m = ?
Given that,
The specific heat given is represented by = c = 2.4 J/gC
The temperature given is ΔT = 5.43° C
The mass of sample of alcohol can be found as follows,
The formula is c = 
We can drive value of m bu shifting m on the left hand side,
m = 
mass of alcohol (m) = 
m = 367 g
Therefore, The mass of the given sample of alcohol is
m = 367g
It requires 4780 J of heat to raise the temperature by 5.43 C in the process which yields a mass of 367 g of alcohol.
Answer:
Explanation:
The moving part won't move on its own there's a force but the force isn't enough for something like a bike chain it need grease to move smoothly or else it will just be super stuck or slow.
A is your answer The ratio of females to males
<span>250 ml * 1.25 g/ml * 3.74 j/g-K * 9.2 K = 10.752 kJ
Pretty much, all you need to do here is multiply all of these out to get your final answer. Not all questions are this easy, but this is certainly one of them.</span>
Answer:
E
Explanation:
Here in this question, what we will do is to select which of the pairs that do not correlate.
A. Enthalpy and heat content
This two terms are at par with each other. By definition, the enthalpy of a system simply is the total amount of heat content it has.
B. Endothermic reaction and +H
These two terms are at par with each other. An endothermic reaction is one in which heat is absorbed from the surroundings. It has a positive value for the heat content i.e the enthalpy is positive and thus H is positive.
C. Exothermic reaction and -H
An exothermic reaction is one in which heat is released to the environment. It usually has a negative value for the enthalpy and thus the value of H is negative.
D. High energy and High Stability
These two terms are not at par. When an entity has or is of high energy, it is usually unstable. An entity at a higher energy level will not be stable until it goes to a lower level of energy.
Thus higher energy level is associated with lesser stability while lower energy levels are associated with higher stability. The lesser the energy of an entity, the higher its stability.
This makes the option our answer.