Answer:
Compound A: Benzoyl chloride
Compound B: Benzaldehyde - (tBuO)₃Al complex
Compound C: Benzaldehyde
Compound D: Benzyl alcohol
Explanation:
The lithium tri-tert-butoxyaluminum hydride that the first student used is a milder reagent than LAH and will stop reacting at the aldehyde.
The LAH that the second student used is much more reactive and will continue to reduce the benzoic acid as far as possible, going all the way to the alcohol.
See the attachment for the reaction steps.
Answer:
Option D. 17.5
Explanation:
Equiibrium is: CO + 2H₂ ⇄ CH₃OH
1 mol of CO is in equibrium with 2 moles of hydrogen in order to make, methanol.
Initially we have 0.42 moles of CO and 0.42 moles of H₂
If 0.29 moles of CO remained, (0.42 - 0.29) = 0.13 moles have reacted.
So in the equilibrium we may have:
0.29 moles of CO, and (0.42 - 0.13 . 2) = 0.16 moles of H₂
Ratio is 1:2, if 0.13 moles of CO haved reacted, (0.13 . 2) moles have reacted of hydrogen
Finally 0.13 moles of methanol, are found after the equilibrium reach the end.
Let's make expression for KC: [Methanol] / [CO] . [Hydrogen]²
0.13 / (0.29 . 0.16²)
Kc = 17.5
19) it's not balanced because when adding h2 and o2 u get h2o2 not h2o
20) I'm not sure
Answer:
mass of carbon-dioxide = 0.262 g
Explanation:
Firstly, write the chemical equation of the reaction and balance the equation accordingly.
2NaHCO3(aq) → CO2(g) + H2O(l) + Na2CO3(aq)
Calculate the molecular mass of baking soda
molar mass of baking soda = 23 + 1 + 12 + 48 = 84 g
2 moles of baking soda = 2 × 84 = 168 g
molar mass of CO2 = 12 + 32 = 44 g
if 168 g of baking soda produces 44 g of carbon-dioxide
1 g of baking soda will produce ? grams of carbon-dioxide
cross multiply
mass of carbon-dioxide = 44/168
mass of carbon-dioxide = 0.2619047619
mass of carbon-dioxide = 0.262 g
Answer: The thermal energy that would be released by 276.0g of sodium acetate trihydrate is 71.8kJ.
Explanation:
Supercooling is the process of lowering the temperature a liquid below its freezing point, without it becoming solid. A liquid below its freezing point will crystallize in the presence of a seed crystal because it serves as a structure for formation of crystals. From the question,
The given mass of sodium acetate trihydrate
(CH3COONa.3H2O)= 276.0g
Molar mass of sodium acetate
trihydrate= 136.08g/mol
Thermal heat of fusion of sodium acetate
trihydrate = 35.9 kJ/mol
From the given mass the number of moles present= 276.0/ 136.08
= 2.0moles
Therefore the heat (thermal) energy of the given mass of sodium acetate
trihydrate = 2.0 × 35.9
= 71.8kJ
Therefore, upon addition of a small seed crystal, the solution temperature increases as sodium acetate trihydrate crystallizes.