Answer:
Every location on Earth experiences an average of 12 hours of light per day but the actual number of hours of daylight on any particular day of the year varies from place to place.
Answer: Mass of silver deposited at the cathode is 37.1g
Explanation: According to Faraday Law of Electrolysis, the mass of substance deposited at the electrode (cathode or anode) is directly proportional to quantity of electricity passed through the electrolyte
Faraday has found that to liberate one gm eq. of substance from an electrolyte, 96500C of electricity is required.
+e− ==> Ag(s)
Given that
Current (I) = 8.5A
Time (t) = 65 *60 = 3900s
Quantity of electricity passed = 8.5*3900 =33150C
Molar mass of Ag= 108g
96500C will liberate 108g
33150C will liberate Xg
Xg= (108*33150)/96500
=37.1g
Therefore the mass of Ag deposited at the cathode is 37.1g.
Answer:
Volume of the concentrated solution, which is needed is 103.30 mL
Explanation:
Let's apply the formula for dilutions to solve the problem
Conc. Molarity . Conc. volume = Dil. Molarity . Dil volume
12.1 M . Conc. volume = 2.5 M . 500 mL
Conc. volume = (2.5 M . 500 mL) / 12.1M
Conc. volume = 103.30 mL
Answer:

Explanation:
We can use the Ideal Gas Law to calculate the density of the gas.
pV = nRT
n = m/M Substitute for n
pV = (m/M)RT Multiply both sides by M
pVM = mRT Divide both sides by V
pM = (m/V) RT
ρ = m/V Substitute for m/V
pM = ρRT Divide each side by RT

Data:
p = 1.00 bar
M = 49 g/mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 0 °C = 273.15 K
Calculation:
ρ = (1.00 × 49)/(0.083 14 × 273.15) = 2.2 g/L
The density of the gas is
.