Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

For the answer to the question above, <span>Hydrophobic regions and hydrophilic regions in the molecules of the b-globin. The replacement causes these hemoglobin molecules to be stickies which gives the cell its sickle shape.
I hope this helps. Have a nice day!</span>
To find the mass you need to find the weight of a mol of the molecules by adding up the atomic mass.
N = 14.007 g/mol
H = 1.008 g/mol
S = 32.065 g/mol
O = 16 g/mol
2(14.007) + 8(1.008) + 32.065 + 4(16) = 132.143 g/mol
Now you know how much an entire mol weight you multiply it by how much you actually have
0.00456 * 132.143 = 0.603 g
2KClO3 --> 2KClO2 + O2
12 6 (moles)
The ratio of KClO3 and O2 is 2:1. This means 2 moles of KClO3 can create 1 mole of O2. So 12 moles of KClO3 will create 6 moles of O2.
The balanced equation :
2NaHCO₃⇒CO₂ + Na₂CO₃+H₂O
<h3>Further explanation</h3>
Given
Reaction
NaHCO(s) --> _CO2+_NaCO(s)+_H2O
Required
The balanced equation
Solution
Maybe the equation should be like this :
NaHCO₃⇒CO₂ + Na₂CO₃+H₂O
Give a coefficient
NaHCO₃⇒aCO₂ + bNa₂CO₃+cH₂O
Make an equation
Na, left=1, right=2b⇒2b=1⇒b=1/2
H, left=1, right=2c⇒2c=1⇒c=1/2
C, left=1, right=a+b⇒a+b=1⇒a+1/2=1⇒a=1/2
The equation becomes :
NaHCO₃⇒1/2CO₂ +1/2Na₂CO₃+1/2H₂O x2
2NaHCO₃⇒CO₂ + Na₂CO₃+H₂O