The water cycle has to do with precipitation, evaporation, condensation, transpiration, runoff, and many other processes which is the form of weather like storms, tornadoes, hurricanes, etc. There's many different kinds of precipitation and every one is different and that will affect the climate. Moisture and condensation will also affect the climate and the weather.
Hope this helps you!
Answer:
840 cm
Explanation:
Note: A hydraulic press operate based on pascal's principle.
From pascal's principle
W₁/d₁ = W₂/d₂...................... Equation 1
Where W₁ and W₂ are the first and second weight, and d₁ and d₂ are the first and second diameter of the piston.
make d₁ the subject of the equation
d₁ = W₁×d₂/W₂................ Equation 2
Given: W₁ = 2100 kg, W₂ = 25 kg, d₂ = 10 cm = 0.1 m.
Substitute these values into equation 2
d₁ = 2100(0.1)/25
d₁ = 8.4 m
d₁ = 840 cm
Answer: 0.62
Explanation:
Coefficient of friction is defined as the ratio of the moving force (Fm) acting on a body to the normal reaction (R).
Note that the normal reaction acts vertically on the object and is equal to the objects weight (W) i.e W=R
Since W = mg, W = 38.4 ×10
W= 384N =R
Normal reaction = 384N
The horizontal force acting on the body will be the moving force which is 238N
Coefficient of friction = Fm/R
Coefficient of friction = 238/384
Coefficient of friction = 0.62
Therefore, coefficient of kinetic friction between the box and the floor is 0.62
Answer:
Vertical distance= 3.3803ft
Explanation:
First with the speed of the ball and the distance traveled horizontally we can determine the flight time to reach the plate:
Velocity= (90 mi/h) × (1 mile/5280ft) = 475200ft/h
Distance= Velocity × time⇒ time= 60.5ft / (475200ft/h) = 0.00012731h
time= 0.00012731h × (3600s/h)= 0.458316s
With this time we can determine the distance traveled vertically taking into account that its initial vertical velocity is zero and its acceleration is that of gravity, 9.81m/s²:
Vertical distance= (1/2) × 9.81 (m/s²) × (0.458316s)²=1.0303m
Vertical distance= 1.0303m × (1ft/0.3048m) = 3.3803ft
This is the vertical distance traveled by the ball from the time it is thrown by the pitcher until it reaches the plate, regardless of air resistance.