Answer:
The frequency of the photon is
.
Explanation:
Given that,
Energy
We need to calculate the energy
Using relation of energy

Where,
= energy spacing


Put the value of h into the formula


Hence, The frequency of the photon is
.
<h2>Answer:</h2><h3>D. ability to react with oxygen</h3><h2>Explanation:</h2>
<em>Im</em><em> </em><em>not</em><em> </em><em>sure</em><em> </em><em>this</em><em> </em><em>in</em><em> </em><em>your</em><em> </em><em> </em><em>choices</em><em> </em><em>but</em><em> </em><em>if</em><em> </em><em>it</em><em> </em><em>is</em><em>,</em><em> </em><em>this</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>answer</em><em>. </em>
<em>I</em><em> </em><em>hope</em><em> </em><em>I've</em><em> </em><em>helped</em><em>. </em>
Answer:
The intensity of the electric field is

Explanation:
The electric field equation is given by:

Where:
- k is the Coulomb constant
- q is the charge at 0.4100 m from the balloon
- d is the distance from the charge to the balloon
As we need to find the electric field at the location of the balloon, we just need the charge equal to 1.99*10⁻⁷ C.
Then, let's use the equation written above.


I hope it helps you!
D. convergent plate boundary involving an oceanic plate