Mass of an individual atoms or molecules
The answer is the third one down. New evidence may contradict the old evidence of a certain theory.
We need to draw a coordinates. the east and south should be the north vector for horizontal line 50 KM in distance is zero. the south is a negative. the south east and north west we should draw the 45 degrees angle in the approprate quadrant and then use the 1-1-sqrt(2) have a relationship in 45-45-90 triangles to resolve the N/S, E/W components.
hope this help
Answer: Mendeleev arranged the elements in his periodic table in <em>order of increasing atomic mass.</em> In the modern periodic table, elements are arranged <em>in order of increasing atomic number</em>
Answer:
The potential energy is transformed into kinetic energy
Explanation:
This particular case is defined as the principle of energy conservation since energy is not created or destroyed only transforms. When you have potential energy it can be transformed into kinetic energy or vice versa. In this problem, we have the case of a ball that sits on a desk and then falls to the ground. In this way the ground will be taken as a reference point, this is a point at which the potential energy will be equal to zero in such a way that when the ball is on the desktop that is above the reference line its potential energy will be maximum. As the ball drops its potential energy decreases, as the height relative to the ground (reference point) decreases. In contrast its kinetic energy increases and increases as it approaches the ground. So when it hits the ground it will have maximum kinetic energy and will be equal to the potential energy for when the ball was on the desk.
Therefore:
![E_{p} = potential energy [J] = E_{k} = kinetic energy [J]where:\\E_{p} =m*g*h\\m =mass [kg]\\g=gravity[m/s^2]\\h=elevation[m]\\E_{k} = \frac{1}{2} *m*v^{2} \\where:\\v=velocity [m/s]\\\frac{1}{2} *m*v^{2} = m*g*h](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%20%3D%20E_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5Dwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cm%20%3Dmass%20%5Bkg%5D%5C%5Cg%3Dgravity%5Bm%2Fs%5E2%5D%5C%5Ch%3Delevation%5Bm%5D%5C%5CE_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv%3Dvelocity%20%5Bm%2Fs%5D%5C%5C%5Cfrac%7B1%7D%7B2%7D%20%20%2Am%2Av%5E%7B2%7D%20%3D%20m%2Ag%2Ah)