Answer:
3658.24m
Explanation:
Hello!
the first thing that we must be clear about is that the train moves with constant acceleration
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf = final speed
=160km/h=44.4m/s
Vo = Initial speed
=42.9km/h=11.92m/s
A = acceleration
=0.25m/s^2
X = displacement
solving

the distance traveled by the train is 3658.24m
Force , F = ma
F = m(v - u)/t
Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.
m= 1.2*10³ kg, u = 10 m/s, v = 20 m/s, t = 5s
F = 1.2*10³(20 - 10)/5
F = 2.4*10³ N = 2400 N
Let the distance between the towns be d and the speed of the air be s.
distance = speed * time
convert the minutes time into hours.
When flying into the wind, ground speed will be air speed MINUS wind speed, hence the against the wind trip is described by:
d
s−15
=
7
3
return trip is then :
d
s+15
=
7
5
Cross-multiplying both we get the two-variable system:
3d=7∗(s−15)5d=7∗(s+15)
3d=7s−1055d=7s+105
subtract first equation from second equation we get
2d=210d=105km
Substitute the value of d in the above equations for s.
5∗105=7s+1057s=420s=60km/hr
Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:
