The change in potential energy when the block falls to ground is -480J.
The maximum change in kinetic energy of the ball is 480 J.
The initial kinetic energy of the ball is 0 J.
The final kinetic energy of the ball is 0.148J.
The initial potential energy of the ball is 0.187 J.
The final potential energy of the ball is 0 J.
The work done by the air resistance is 0.039 J.
<h3>Change in potential energy when the block falls to ground</h3>
ΔP.E = -mgh
ΔP.E = -Wh
ΔP.E = - 40 x 12
ΔP.E = -480 J
<h3>Maximum change in kinetic energy of the ball</h3>
ΔK.E = - ΔP.E
ΔK.E = - (-480 J)
ΔK.E = 480 J
<h3>Initial kinetic energy of the ball</h3>
K.Ei = 0.5mv²
where;
- v is zero since it is initially at rest
K.Ei = 0.5m(0) = 0
<h3>Final kinetic energy</h3>
K.Ef = 0.5mv²
K.Ef = 0.5(0.0091)(5.7)²
K.Ef = 0.148 J
<h3>Initial potential energy of the ball</h3>
P.Ei = mghi
P.Ei = 0.0091 x 9.8 x 2.1
P.Ei = 0.187 J
<h3>Final potential energy</h3>
P.Ef = mghf
P.Ef = 0.0091 x 9.8 x 0
P.Ef = 0
<h3>Work done by the air resistance</h3>
W = ΔE
W = P.E - K.E
W = 0.187 J - 0.148 J
W = 0.039 J
Learn more about potential energy here: brainly.com/question/1242059
#SPJ1
<h3 />
To calculate the change in kinetic energy, you must know the force as a function of position. The work done by the force causes the kinetic energy change
Explanation:
The work-energy theorem states that the change in kinetic enegy of an object is equal to the work done on the object:

where the work done is the integral of the force over the position of the object:

As we see from the formula, the magnitude of the force F(x) can be dependent from the position of the object, therefore in order to solve correctly the integral and find the work done on the object, it is required to know the behaviour of the force as a function of the position, x.
This depends on the original mass of the object having its mass doubled and the the original distance before the distance was tripled.
Answer:
Young modulus = 9.8 × 10⁹ N/m²
Explanation:
From the information given:
Stress = F/A
Stress = (10 × 9.8) / 0.001²
Stress = 9.8× 10⁷ N/m²
Strain = increase in length / initial length of wire
Strain = 0.02/ 2
Strain = 0.01
Now;
The Young modulus (Y)= stress/strain
Young modulus = (9.8 × 10⁷ N/m²) / 0.01
Young modulus = 9.8 × 10⁹ N/m²
Answer:
a) 15.78 mi/h/s
b) 7.105 m/s^2
Explanation:
a) It is given that speed changes from 0 to 60 miles per hour (mph)
Acceleration is equal to change in speed divided by time
mi/h/s
b)
1 mile/h = 0.45 m/s
Acceleration in m/s^2
m/s^2