Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
Each serving gives 3 grams or 12% of daily recommended value. Divide 100% by 12% to get 8.33 servings to obtain the daily recommended value of 25 grams.
Answer:
0.0667 m
Explanation:
λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m
D = screen distance = 2.5 m
d = slit width = 15 x 10⁻⁶ m
n = order = 1
θ = angle = ?
Using the equation
d Sinθ = n λ
(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)
Sinθ = 26.67 x 10⁻³
y = position of first minimum
Using the equation for small angles
tanθ = Sinθ = y/D
26.67 x 10⁻³ = y/2.5
y = 0.0667 m
30 km/h * 17 h = 30*17 km/h *h
= 510 km
Answer:
Explanation:
Given
Initial reading on scale =40 N
So, we can conclude that weight of the sack is 40 N
After this a 10 N force is applied upward on the sack such that the net force becomes (40-10) N downward (because downward force is more)
This net downward force is the resultant of earth graviational pull and the applied upward force.
So, this downward force acts on the machine which inturn applies an upaward force of same magnitude called Normal reaction.
This situation can be diagramatically represented by figure given below