The image is here, i am struggled with this problems too please help!
Answer:
For #1, 8.9.
Step-by-step explanation:
I can attempt to answer it, but I can't promise anything.
Alright, so, the equation for this should be A²+B²=C²
C is usually the longer side, which for you is the side that is missing.
Let's try the first one. If what I see is right, the 2 sides are 4 and 8. A is 8 and B is 4.
That means that the equation would be 8²+4²=C²
That would be 64+16=80
The equation is now 80= c²
The opposite of "to the power of 2" is a square root. So, now you're going to find the square root of 80, which is 8.9 to the nearest tenth.
So, for the first question, the answer should be 8.9
I hope this helps you solve the rest.
1/8 + 1/6
= 1 x 3 + 1 x 4
——- ——
8 x 3 6 x 4
= 3/24 + 4/24
= 3 + 4
———-
24
= 7/24
Yeah you did it right but good job!
Equivalent expressions are expressions that have the same value, and can be used interchangeably.
The result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The expression is given as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29)
Rewrite the expression as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%28%5Csqrt%5B3%5D%7B2%5E4x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B3%5E3%20%5Ctimes%202x%5E6y%5E5%7D%29)
Evaluate the roots
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%282x%5Csqrt%5B3%5D%7B2y%7D%29%20%20%2B%204%20%283x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Open the brackets
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%204x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%2012x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The above expression cannot be further simplified.
Hence, the result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Read more about equivalent expressions at:
brainly.com/question/2972832