Answer:
3.0×10⁻¹³ M
Explanation:
The solubility product Ksp is the product of the concentrations of the ions involved. This relation can be used to find the solubility of interest.
<h3>Equation</h3>
The power of each concentration in the equation for Ksp is the coefficient of the species in the balanced equation.
Ksp = [Al₃⁺³]×[OH⁻]³
<h3>Solving for [Al₃⁺³]</h3>
The initial concentration [OH⁻] is that in water, 10⁻⁷ M. The reaction equation tells us there are 3 OH ions for each Al₃ ion. If x is the concentration [Al₃⁺³], then the reaction increases the concentration [OH⁻] by 3x.
This means the solubility product equation is ...
Ksp = x(10⁻⁷ +3x)³
For the given Ksp = 3×10⁻³⁴, we can estimate the value of x will be less than 10⁻⁸. This means the sum will be dominated by the 10⁻⁷ term, and we can figure x from ...
3.0×10⁻³⁴ = x(10⁻⁷)³
Then x = [Al₃⁺³] will be ...
![[\text{Al}_3^{\,+3}]=\dfrac{3.0\times10^{-34}}{10^{-21}}\approx \boxed{3.0\times10^{-13}\qquad\text{moles per liter}}](https://tex.z-dn.net/?f=%5B%5Ctext%7BAl%7D_3%5E%7B%5C%2C%2B3%7D%5D%3D%5Cdfrac%7B3.0%5Ctimes10%5E%7B-34%7D%7D%7B10%5E%7B-21%7D%7D%5Capprox%20%5Cboxed%7B3.0%5Ctimes10%5E%7B-13%7D%5Cqquad%5Ctext%7Bmoles%20per%20liter%7D%7D)
We note this value is significantly less than 10⁻⁷, so our assumption that it could be neglected in the original Ksp equation is substantiated.
__
<em>Additional comment</em>
The attachment shows the solution of the 4th-degree Ksp equation in x. The only positive real root (on the bottom line) rounds to 3.0×10^-13.
I attended the answer. I hope this helps you.
In the crystallization process the solid compound is dissolved in the solvent at elevated temperature and the crystallize product obtained by slow cooling of the solution. Here the solubility of acetanilide at 100°C is 1g per 20mL of water. Thus to dissolve 500mg of acetanilide at high temperature that is 100°C we need 10mL of water.
Now at 25°C after the re-crystallization there will be some amount of dissolve acetanilide. Which can be calculated as- 185mL of water is needed to dissolve 1g or 1000mg of acetanilide at 25°C. Thus in 10mL of water there will be
gmg of acetanilide.
Answer:
what you've asked so I guess the answer will be 10 days