Answer:
NaCl will only conduct electricity in solutions
Explanation:
For electrical conduction, free mobile electrons as seen in most metals must be present or ions which are charged particles must be available for solutions and molten substances.
- Sodium chloride is an ionic compound without free mobile electrons or ions despite being ionic.
- It will maintain a subtle and unique charge stability when in solid form.
- In solid, the ions are not free to move and remain locked up in the solid mass.
- When introduced into a solution, the ions becomes free to move and this will aid electrical conduction.
"Silver chloride is essentially insoluble in water" this statement is true for the equilibrium constant for the dissolution of silver chloride.
Option: b
<u>Explanation</u>:
As silver chloride is essentially insoluble in water but also show sparing solubility, its reason is explained through Fajan's rule. Therefore when AgCl added in water, equilibrium take place between undissolved and dissolved ions. While solubility product constant
for silver chloride is determined by equilibrium concentrations of dissolved ions. But solubility may vary also at different temperatures. Complete solubility is possible in ammonia solution as it form stable complex as water is not good ligand for Ag+.
To calculate
firstly molarity of ions are needed to be found with formula: 
Then at equilibrium cations and anions concentration is considered same hence:
![\left[\mathbf{A} \mathbf{g}^{+}\right]=[\mathbf{C} \mathbf{I}]=\text { molarity of ions }](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%3D%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D%3D%5Ctext%20%7B%20molarity%20of%20ions%20%7D)
Hence from above data
can be calculated by:
= ![\left[\mathbf{A} \mathbf{g}^{+}\right] \cdot[\mathbf{C} \mathbf{I}]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%20%5Ccdot%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D)
Answer:
Turgor pressure in plants. Turgor pressure within cells is regulated by osmosis and this also causes the cell wall to expand during growth.
Explanation:
I hope that helps
Answer:
0,508g of H₂O₂
Explanation:
For the reaction:
2KMnO₄(aq) + H₂O₂(aq) + 3H₂SO₄(aq) → 3O₂(g) + 2MnSO₄(aq) + K₂SO₄(aq) + 4H₂O(l)
2 moles of KMnO₄ react with 1 mol of H₂O₂.
In the titration, moles of KMnO₄ required were:
1,68M×0,0178L = 0,0299 moles of KMnO₄. Moles of H₂O₂ are:
0,0299 moles of KMnO₄×
= 0,01495 moles of H₂O₂. As molar mass of H₂O₂ is 34,01g/mol, mass of H₂O₂ was dissolved is:
0,01495 moles of H₂O₂×
= <em>0,508g of H₂O₂</em>