Explanation:
The position vector r:

The velocity vector v:

The acceleration vector a:



I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
<h2>42 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 7 kg
acceleration = 6 m/s²
We have
force = 7 × 6 = 42
We have the final answer as
<h3>42 N</h3>
Hope this helps you
Answer:
Too old(Ex. if real time is 1000 then they estimate >1000)
Explanation:
This is because with time our planet may have a definite function which describes temperature.(Because of all the factors and global warming except nuclear bomb testing)
Now nuclear test on planet have significant effect on temperature rise.
Also 14°C rise in temperature is good one because of this.
If future archaeologists only consider that uniform function as above mentioned then they estimate more time then the real one.
Thus too old is right answer.