a. use increased crop diversity and fewer off the farm resources in order to reduce pressure on resources
Explanation:
A farmer using sustainable agricultural practices will use increased crop diversity and fewer off the farm resources in order to reduce dependency on other resources.
The major goal of sustainable agriculture is to cultivate plants and groom livestock in the best way that won't alter the environment.
- This usually entail the cultivation of different crops.
- Diversity of crops provides the means to sustain and retain soil fertility naturally without having to add fertilizers.
- In animal husbandry, some of wastes are used on farm and the excesses from the farm are used to feed livestock.
- Sustainable agriculture is a practice of self-reliant agriculture without infringing on the environment.
learn more:
Human impact on rainforest brainly.com/question/12095428
#learnwithBrainly
Answer:
The solute is oxygen
The solvent is water
Explanation:
A solvent is any chemical substance that dissolves other chemical substances, while a solute refers to any chemical substance that dissolves in other chemical substances. The best way to know when a chemical substance dissolves in another chemical substance is when a solid or gas dissolves in water. The solid or the gas can now be referred to as the solute and it will be shown to be in the the aqueous state, while the solvent is usually shown to be in the liquid state in any chemical equation.
Let us use the particular example of the dissolution of oxygen gas in water as shown below;
O2(g) + H2O(l)⇄O2(aq) + H2O(l)
The aqueous oxygen is the solute while the liquid water is the solvent.
Also, the substance having a smaller mass must be the solute and the substance having the larger mass must be the solvent.
It can be transferred by I, II, and III
Hope this helps ! :}
Energy is transferred in a wave
Energy is transferred, but mass is not.
Answer:
110.9 m/s²
Explanation:
Given:
Distance of the tack from the rotational axis (r) = 37.7 cm
Constant rate of rotation (N) = 2.73 revolutions per second
Now, we know that,
1 revolution =
radians
So, 2.73 revolutions = 
Therefore, the angular velocity of the tack is, 
Now, radial acceleration of the tack is given as:

Plug in the given values and solve for
. This gives,
![a_r=(17.153\ rad/s)^2\times 37.7\ cm\\a_r=294.225\times 37.7\ cm/s^2\\a_r=11092.28\ cm/s^2\\a_r=110.9\ m/s^2\ \ \ \ \ \ \ [1\ cm = 0.01\ m]](https://tex.z-dn.net/?f=a_r%3D%2817.153%5C%20rad%2Fs%29%5E2%5Ctimes%2037.7%5C%20cm%5C%5Ca_r%3D294.225%5Ctimes%2037.7%5C%20cm%2Fs%5E2%5C%5Ca_r%3D11092.28%5C%20cm%2Fs%5E2%5C%5Ca_r%3D110.9%5C%20m%2Fs%5E2%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B1%5C%20cm%20%3D%200.01%5C%20m%5D)
Therefore, the radial acceleration of the tack is 110.9 m/s².