B low frequency it is the lowest frequency
Answer:
Current
Explanation:
Convection is the movement caused within a fluid by the tendency of hotter and therefore less dense material to rise, and colder, denser material to sink under the influence of gravity, which consequently results in transfer of heat. Simply put, Convection is the circular motion that happens when warmer air or liquid — which has faster moving molecules, making it less dense — rises, while the cooler air or liquid drops down.
An everyday example of convection is boiling water ; The heat passes from the burner into the pot, heating the water at the bottom. The water at the bottom rises and is replaced by the water at the top of the pot.
This rise of less dense water at a higher temperature and fall of denser water at a lower temperature sets up a convention current circularly until the water boils. This is a typical example of the day to day application of convection currents.
<span>Plug in 288 for h, move it over to the right side and do the quadratic formula to solve for t. You will get 2 times, in between and including those times will give you the period it is at least 288 ft off the ground.
</span>You can simplify this and not need to use the quadratic.
<span>288=−16<span>t^2</span>+144t
</span><span>Divide through by 16 getting
18=-t^2 + 9t
</span><span><span>t^2</span>−9t+18=0</span><span> Is what you would get after rearranging the equation Now you have something you can easily factor</span><span>
</span>
By definition, photosynthesis is the process made by green plants, algae and some other forms of bacteria to make their own food by converting carbon dioxide and water into glucose.
So how important is photosynthesis to plants? It is as important as how humans need food in order to survive. Plants also need food and energy to survive and grow.
Not only food is the important matter to be addressed when it comes to photosynthesis. It is also important for plants' cellular respiration. These processes are constantly made by plants throughout their entire life.
a) The change in momentum of the ball is given by:

where m=140 g=0.14 kg is the mass of the ball, and
is the change in velocity. Substituting, we find

The ball stops in t=1.5 ms=0.0015 s; the magnitude of the force that stops the baseball is given by the ratio between the change in momentum and the time taken:

b) The force we found at point a) is the force that the head exerts on the ball to stop it. However, Newton's third law states that when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. If we apply this law to this case, we understand that the force exerted by the baseball on the head is equal to the force exerted by the head on the ball: therefore, the answer is still 2.8 kN.
c) The forehead is not in danger of a fracture, since it can withstand a maximum force of 6.0 kN, while the ball exerts a force of 2.8 kN. Instead, the cheek is in danger of fracture, because it can withstand only a maximum force of 1.3 kN.